I agree (?) that using AI vibe-coding can be a good way to prooduce a prototype for stakeholders to see if the AI-output is actually something they want.
The problem I see is how to evolve such a prototype to more correct specs, or changed specs in the future, because AI output is non-deterministic -- and "vibes" are ambiguous.
Giving AI more specs or modified specs means it will have to re-interpret the specs and since its output is non-deterministic it can re-interpret viby specs differently and thus diverge in a new direction.
Using unit-tests as (at least part of) the spec would be a way to keep the specs stable and unambiguous. If AI is re-interpreting the viby ambiguous specs, then the specs are unstable which measn the final output has hard-time converging to a stable state.
I've asked this before, not knowing much about AI-sw-development, whether there is an LLM that given a set of unit-tests, will generate an implementation that passes those unit-tests? And is such practice used commonly in the community, and if not why not?
The problem I see is how to evolve such a prototype to more correct specs, or changed specs in the future, because AI output is non-deterministic -- and "vibes" are ambiguous.
Giving AI more specs or modified specs means it will have to re-interpret the specs and since its output is non-deterministic it can re-interpret viby specs differently and thus diverge in a new direction.
Using unit-tests as (at least part of) the spec would be a way to keep the specs stable and unambiguous. If AI is re-interpreting the viby ambiguous specs, then the specs are unstable which measn the final output has hard-time converging to a stable state.
I've asked this before, not knowing much about AI-sw-development, whether there is an LLM that given a set of unit-tests, will generate an implementation that passes those unit-tests? And is such practice used commonly in the community, and if not why not?